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Abstract A new, general method of solution for the cluster variation method using a re-
duced conjugate gradient approach with a truncated line-search algorithm is presented. The
method is generally convergent. Additionally, the truncation of the line-search algorithm
may increase the speed of convergence considerably, as the size of the problem is pro-
gressively reduced (especially for strongly ordered phases), opening up the possibility of a
considerable increase in the size of maximal clusters. The method is successfully demon-
strated for a single, eight-atom maximal cluster in the fluorite lattice. Using pairwise defect
interaction energies calculated for cubic, yttria-doped zirconia and fixed defect concentra-
tions, a pair of metastable states are found in a composition and temperature range which is
experimentally characterized by metastable, diffusionless phase transitions.

Keywords Cluster variation method · Reduced gradient method · Yttria-stabilized
zirconia · Diffusionless phase transition

1 Introduction

The cluster variation method (CVM) is a well-studied technique used to calculate phase
equilibria from first principles. Based on the variational principle of statistical mechanics,
the method breaks a static lattice into a set of overlapping clusters called the basic or maxi-
mal clusters. There may be one or several different types of maximal clusters on the lattice,
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with the only stipulation being that no maximal cluster can be a subset of any other. In the
following, the set of maximal clusters will be called {β}.

If interactions among constituents in the lattice are fully encompassed within the max-
imal clusters, this leads to an exact expression for the lattice Hamiltonian in terms of the
probability distributions of maximal clusters {pβ}, which are functions of the cluster con-
figurations {sβ}. The most important aspect of the method is a closed-form approximation
for the configurational entropy in terms of {pβ}, which can be derived using set-theoretic
arguments. Minimization of the free energy with respect to {pβ} then leads to a statistical
description of the lattice at thermal equilibrium. The method is commonly applied to the de-
termination of phase diagrams in metallic alloys or other substitutional solutions (including
oxides).

In some respects, CVM is inferior to the more explicit calculations that are possible
using Monte Carlo simulations. One shortcoming of present formulations of the method is
that the range of interactions among lattice sites is limited to those short-range distances
contained within the maximal cluster. A related problem is that the size of the vector pβ

increases exponentially with the size of β . When combined with the fact that the free energy
functional takes a nonlinear (logarithmic) form, which generally can only be solved with
a third-order computational complexity, this means that interaction distances beyond a few
atomic spacings can quickly rise to a fairly large computational burden. This problem may
be particularly acute in ionic solids, where multiple interacting sublattices and long-ranged
chemical interactions may force the use of large maximal clusters.

But CVM also has some distinct advantages over Monte Carlo. It directly calculates free
energies, whereas only indirect calculations are possible using importance sampling Monte
Carlo. CVM can also be used to easily identify metastable states, as will be demonstrated in
this paper.

In order to benefit from these advantages in the context of thermodynamic calculations
in ionic solids, however, the problems with long-range interactions and high computational
loads must be addressed. This work concerns itself primarily with the latter. A new method,
presented and demonstrated in this work for the first time, proves to be a convergent and
potentially quite efficient method of solution for the general case of CVM.

2 Theory

2.1 Formulation of CVM in Ionic Solids

The first description of CVM is usually attributed to Kikuchi [13], while the connection
between the work of Kikuchi and that of the quasi-chemical methods described by Guggen-
heim and Bethe was pointed out by Barker [2]. Barker’s work also provided a practical algo-
rithm for the calculation of the entropy coefficients, as demonstrated in the work of Sanchez
and de Fontaine [28]. But a rigorous mathematical description of CVM was not achieved
until the work of Morita, who first described the method as an expansion of entropy cu-
mulants for which there exists a Möbius inversion; the truncation of the expansion at the
maximal clusters and the inversion of the resulting truncated summation leads to a closed-
form solution [19]. Schlijper later proved (for a particular case, but in such a manner as to
suggest that the results might be more general) that with increasing size of the maximal clus-
ter, the estimate of the free energy provided by the CVM monotonously approaches—and
in the limit of an infinite maximal cluster, reaches—the exact result in the thermodynamic
limit [29]. Concise summaries of Morita’s and Schlijper’s work have been written by An [1]
and Pelizzola [21].
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There is no fundamental change in the method when moving from a single lattice to
interpenetrating sublattices, and one may simply treat crystal defects (substitutional dopants
or vacancies, or interstitial ions) in exactly the same manner as one treats the components of
a metallic alloy [30]. The resulting variational statement is:

F = min
{pβ }

F ({pβ})

= min{pβ }
∑

β

[
∑

sβ

lβ(sβ)pβ(sβ)hβ(sβ)/kBT

+
∑

α⊆β

aαnα

∑

sα

lα(sα)pα(sα) logpα(sα)

]
(1a)

where

Cβpβ = bβ ∀β (1b)

In (1a), which refers to the canonical ensemble, F is the equilibrium Helmholtz free energy
per site (or per chemical formula), which is the minimum of the functional F subject to the
constraints, lβ(sβ) is the degeneracy of the configuration sβ , hβ is a cluster-specific element
of the Hamiltonian, such that H(sβ) = ∑

β,sβ
hβ(sβ) is the system Hamiltonian (evaluated

per site or chemical formula), α is any subcluster of the maximal cluster β , and nα is the
number of distinct copies of α contained in the lattice per site or chemical formula. The
coefficients aα are integers which may be calculated by analyzing the overlap between the
cluster α and all clusters in the lattice containing it which are also contained in β; different
methods given by An [1] and Sanchez and de Fontaine [28] are equivalent for this purpose.
Because the probability distribution pα of any subcluster α of β is a partial sum of pβ , the
entropy term in (1a) may be written in terms of pβ .

The constraints on the system given by (1b) are linear—Cβ is the constraint matrix, which
is of size M × N , where M is the number of constraints and N is the size of the column
vector pβ , and bβ is a column vector of length M . Every application of the method has at
least one constraint, which is the normalization criterion,

∑

sβ

lβ(sβ)pβ(sβ) = 1 ∀β (2)

In addition, there may be two other types of constraints: concentration constraints and trans-
lational constraints. The former may be used in a situation wherein long-range diffusion is
kinetically prevented, but short-range re-arrangement of atoms or ions may still take place,
such as is frequently the case in diffusionless transformations. The corresponding constraint
is:

∑

sβ

lβ(sβ)pβ(sβ)nf,q(sβ)/nt,q(β) = γq ∀q,β (3)

where γq is the fixed site fraction for the species q , nf,q(sβ) is the number of occupied sites
of the species q in sβ , and nt,q(β) is the total number of sites available to species q in the
cluster β .

The translational constraints (also called consistency constraints) arise from the require-
ment that the maximal clusters remain translationally invariant: subclusters appearing in a
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Fig. 1 Implications of the translational invariance of clusters. Solid and dotted lines encapsulate two over-
lapping clusters on a body-centered square lattice with two distinct sublattices; it is clear that the single
site marked with an “X” (along with other sites and subclusters of the maximal cluster) inhabits a different
environment in each. Nevertheless, its occupancy probability must be the same for each main cluster

maximal cluster which are equivalent in the lattice must have equivalent probability dis-
tributions, even when they occupy inequivalent positions within the maximal clusters. Fig-
ure 1 illustrates the situation for an eight-site maximal cluster on a two-dimensional body-
centered square lattice with interpenetrating sublattices. The marked site occupies symmet-
rically inequivalent positions in the two overlapping maximal clusters shown, but of course
the marked site may possess only one occupancy probability. The probability distribution
for the maximal cluster must therefore reflect the same occupancy probability for sites at the
ends of the figure as for sites in the middle. Because the distribution of each subcluster is
normalized and the set of subclusters of the maximal cluster is partially ordered, this can be
accomplished in a binary alloy by requiring merely that the probability distribution of the
fully occupied subclusters are equivalent. The corresponding constraint statements are:

∑

sβi

lβi
(sβi

)pβi
(sβi

)no,i(sβi
)/nc,i(βi) =

∑

sβj

lβj
(sβj

)pβj
(sβj

)no,j (sβj
)/nc,j (βj )

∀(i ⊂ βi, j ⊂ βj ), βi,j ∈ {β} (4)

where no,i(sβi
) is the number of fully occupied subclusters and nc,i(sβi

) the total number
of subclusters of a given type i occurring in the maximal cluster configuration sβi

, and i, j

denote subcluster types that are symmetrically equivalent in the full crystal but inequivalent
in the maximal clusters β .

2.2 Method of Solution and Implementation

2.2.1 Reduced Gradient Method

Deriving a general, provably convergent method of solution for this problem can be quite
straightforward. Given the linearity of the constraints, one may simply incorporate them
into the formulation of the functional, thereby reducing the problem to one of unconstrained
optimization. This avails the problem to methods of the steepest descent/conjugate gradient
type.

One strategy for reducing the problem is a linear transformation of the probability distrib-
ution into a space in which the constraints are automatically satisfied. Such a transformation
was derived by Sanchez and de Fontaine, which converts the vector p (we will leave off
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all subscripts β for the remainder of this section) into a smaller vector ξ , whose elements
are the n-point correlation functions for all of the distinct subclusters of the maximal clus-
ters [28]. Concentration constraints are satisfied simply by fixing the appropriate one-point
correlations. The difficulty with this method, however, is that the transformation distorts the
boundary of the function space—instead of a cuboid bounded at 1 and 0 in each dimension
as it is in p-space, the allowable range of the probability function becomes a polyhedron in
ξ -space, potentially introducing machine error into the specification of the boundary.

The reduced gradient method (see, for example, Ref. [27]), by contrast, requires no trans-
formation of the function space, instead directly reducing the size of the problem by estab-
lishing subsets of dependent and independent variables, related through the constraint ma-
trix. In this method, the constraint matrix C is split into two submatrices B and S, such that
C = [B S] with nonsingular B of size M × M . The vector p is split into two corresponding
subvectors, pB and pS , such that

BpB = b − SpS (5)

The relationship between the corresponding descent vectors δB and δS is

BδB = −SδS (6)

We may then write the total derivative of the functional F with respect to the independent
variables as:

DS F = ∇S F − ST (B−1)T ∇B F (7)

If a gradient-based method is used, it follows that each step of the process will require an
inversion of the matrix B . However, the dimensions of B are likely to be much less than the
length of p, with the discrepancy generally increasing with the size of the basic cluster. Also,
so long as B does not change, we may decompose it at the outset (a QR-decomposition was
used) and store the decomposed matrix. The dependent variables can be any which yield a
nonsingular B . Using (1)–(4)
and (7), any gradient-based method for unconstrained optimization can be applied. The
algorithm used in this work was the Polak-Ribiére conjugate gradient method (see Ref. [9]).

Bracketing of the line search along the direction of descent is quite natural, taking ad-
vantage of the form of the functional and the dimensions of the function space. These di-
mensions are established by the fact that each element p(s) must have a value on the in-
terval (0,1). If a descent direction has been found, the (infinitely) positive gradient of the
functional along any direction as the boundary is approached guarantees the existence of
a directional minimum between the starting point and the boundary. If a descent direction
cannot be found, then the routine is at a stationary point.

2.2.2 Line Search Cutoff

In a typical application of the method using a basic cluster of appreciable size and realistic
cluster energies (such as those based on quantum calculations), many of the elements of
pβ will become very small—the higher the degree of ordering, the smaller the proportion
of elements of pβ that will contribute to the statistical description of the stable state. If
one could identify a set of basic cluster configurations that are likely to have appreciable
probabilities at a given temperature and concentration, the size of the problem could often
be reduced considerably.

One strategy for doing this is to designate as “dormant” elements of pβ which shrink
beyond a certain threshhold during the course of the line search, terminating the line search
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and calculating a new descent direction without considering the dormant terms. One must, of
course, allow for the possible “reawakening” of dormant elements. This is best accomplished
when the problem has reached a convergence point—when the norm of the gradient reaches
a certain absolute or relative value. A full gradient is then calculated, including a full set
of independent variables. Any dormant elements that would be forced further toward zero
in the new search direction remain dormant, but the others are reactivated. The cycle of
convergence and reactivation continues until none of the dormant elements of a converged
set reactivate.

Formally, the criterion used in the line search was

‖f (x)‖ < −0.1f ′(0) ∨ ∃s∗
β : pβ(s∗

β, x) < τl (8)

where f is the value of the functional, f ′ is the directional derivative along the line of
descent, x is the distance from the starting position, τl is the cutoff level, and s∗

β indicates
an active configuration. If the latter criterion was met first, the configuration leading to
the cutoff was made dormant, and a new steepest descent direction was calculated for the
remaining active configurations.

2.2.3 Implementation

Some further comments on the implementation are in order. In the successive shrinking
of the number of active elements, one effectively eliminates columns from the matrix C,
leading to a reduced matrix Cr . This means that mechanisms must be in place to ensure
that a full-rank matrix B can be found when columns in the current B are eliminated. So
long as the matrix Cr is full-rank, this will always be possible (for example, through the
formation of the row-echelon matrix for Cr , which is the method used in this work). But
when the rows of Cr become linearly dependent, one or more rows (and along with them the
corresponding constraints) must also go dormant. The linear independence of the rows of
Cr was monitored at each re-establishment of the matrix B , by calculating the eigenvalues
and eigenvectors of CrC

T
r using Jacobi rotation (a step with O(N2) complexity). A related

issue is that occasionally more than one element will approach zero simultaneously; when
this happens, all of these elements must go dormant at once.

Finally, either the elimination or the reactivation of elements may lead to a situation in
which very small dependent elements are “pushed” over the boundary to zero or negative
values due to roundoff errors. One must therefore establish a failsafe routine which can reset
the small independent variables in such a way that the dependent set is all positive. For this
purpose, an iterative process was established, wherein the whole set is moved in such a way
as to minimize the movement of elements while bringing all elements into the allowable
range. Such a routine can also handle many of the problems with roundoff error which are
bound to arise in the calculation of dependent variables.

3 Application

3.1 Metastable Transitions in YSZ

YSZ is a very important functional ceramic, used in gas sensors and as an electrolyte in
solid oxide fuel cells. At temperatures less than 1000°C and for concentrations of yttrium
above a few percent, the conductivity in YSZ is almost completely ionic. The mechanism
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for the conductivity is the motion of oxygen ions through the bulk of the material, a process
which may just as well be characterized by the motion of oxygen vacancies through the lat-
tice. These vacancies are created as electrostatic compensation for aliovalent yttrium atoms,
which substitute for zirconium, creating an effectively negatively-charged defect.

In pure and yttrium-doped zirconia with compositions of YO1.5 less than approximately
35 mol %, there are three equilibrium phases: the monoclinic, tetragonal and cubic solid so-
lutions [8]. The monoclinic is the low-temperature phase of pure zirconia, and the tetragonal
and cubic phases are realized at progressively higher temperatures by way of martensitic
(diffusionless and displacive) transformations. Addition of yttria thermodynamically stabi-
lizes both tetragonal and cubic phases at lower temperatures. But for finite concentrations of
yttrium, the equilibrium phase transformations are accompanied by yttrium diffusion.

However, the very slow cation mobility in doped zirconias can prevent the formation of
the equilibrium monoclinic and tetragonal phases, creating instead a number of metastable
phases realized through diffusionless phase transitions [32]. At low yttrium concentrations
(approximately less than 3 mol %), transitions between metastable tetragonal and mon-
oclinic phases are martensitic in nature and stress-induced at low temperature, and have
been widely studied due to the increase in fracture toughness associated with these transi-
tions [12]. At higher concentrations of yttrium, there are a pair of irreversible, metastable,
diffusionless cubic-to-tetragonal transitions (often noted as c − t ′ and c − t ′′) [6, 26, 32, 33],
which are realized by rapidly quenching from the melt.

CVM, with its ability to identify metastable states and a natural ability to control local
concentration through constraints on the minimization, could be useful in the study of such
metastable transitions.

3.2 Maximal Clusters

For the case of the fluorite lattice, a single maximal cluster was chosen, shown in Fig. 2. It
has six cation positions encasing one nearest-neighbor anion pair, for a total of eight ions
in all. It can be viewed as a pair of adjacent, edge-sharing cation tetrahedra along with the
enclosed anion of each. This cluster, from here on referred to as the 8-figure, was chosen
for convenience, along with its potential utility in estimating vacancy transport properties in
doped fluorite oxides—it has been used by different investigators for this purpose [20, 23].

For a system with binary occupancy on both sublattices, there are 512 different configu-
rations of the 8-figure, of which, however, only 72 are nondegenerate. An’s result for finding
the coefficients aα (without recourse to the corresponding Möbius function) can be written

∑

α⊆θ
θ∈P

aθ = 1 (9)

where P is the set of clusters formed by β and all of its subclusters found throughout the
lattice. The breakdown of relevant subclusters and coefficients aβ is given in Fig. 3.

Translational analysis of the 8-figure reveals a number of subclusters that are crysto-
graphically equivalent in the fluorite lattice but inequivalent in the 8-figure. These clus-
ters are shown in Fig. 4; among them eight different constraints are required to ensure the
translational invariance of the 8-figure probability distribution. Along with concentration
constraints on both sublattices and normalization, this leads to eleven constraint equations
overall: the dimensions of the matrix C are 11 × 72.

The usual procedure is to use the free energy functional of (1a) to calculate the grand po-
tential, which leads to identification of phases and their boundaries in the equilibrium phase
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Fig. 2 The maximal cluster used
in the study. The cluster contains
two anions and six cations; it is
effectively two edge-sharing
cation tetrahedra, along with the
central anions of each. The plane
shown in the figure is the (110)

diagram. In a situation wherein the concentrations are fixed, however, one must minimize
the Helmholtz energy, meaning that (1) is the final statement of the problem in the present
case.

3.3 Energies

For simplicity, we calculate the Hamiltonian in a pairwise fashion, despite evidence to sug-
gest that the actual situation in YSZ is more complicated than this [4, 5, 10, 24]. Utilizing
more complete information on the defect interaction energies in YSZ would likely require a
larger maximal cluster (and possibly a mean-field accounting for long-range Coulomb inter-
actions). The pair interactions utilized are listed in Table 1, along with energies taken from
the work of Pornprasertsuk et al. [23]. Pornprasertsuk and co-authors used density func-
tional theory to calculate the overall energies of supercells containing 36 cation sites and
72 anion sites, among which there were 6 yttrium ions and 3 oxygen vacancies. The data in
Table 1 for the energies of various defect pairs were acquired using a least-squares fitting.
The data appearing in the table are incomplete, as Pornprasertsuk et al. calculated Y-Y and
V-V interactions up to fourth nearest neighbor. However, interaction energies for Y-Y be-
yond second nearest neighbor were fairly low, while the maximal cluster used in this study
does not contain Y-V relationships beyond second nearest neighbor. Pornprasertsuk et al.
did not calculate energies for V-V interactions; these were supplied by our own DFT calcu-
lations (like Pornprasertsuk et al., we used a plane wave basis set, the generalized gradient
[7, 22] and projector-augmented wave [3, 18] methods, and the Vienna Ab Initio Simulation
Package [16–18] on 2 × 2 × 2 supercells), which suggested that the energy for a first nearest
neighbor V-V interaction is in the neighborhood of 1.0 eV.

3.4 Stability and Performance of the Method

The code was written in C++, using the Blitz++ container class [31].
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Fig. 3 The subclusters and
coefficients that enter into the
approximation of the entropy for
the fluorite lattice with a maximal
cluster as shown in Fig. 2, when
each sublattice has a binary
occupation. Here, in accordance
with (1a), nα is the number of
each subcluster found in the
lattice per cation site, and aα is
the entropy coefficient

Table 1 Bond energies for
various defect pairs Bond Energy (eV)

Y-Y 1NN 0.0335

Y-Y 2NN 0.1451

V-V 1NN 1.0

Y-V 1NN −0.2988

Y-V 2NN −0.3531

The solution method was tested using the energies listed in Table 1, in the composition
range 0.05–0.35 mol % YO1.5 and 400–2000 K. The performance was generally quite good,
with a 97.3% success rate. Those cases which did not converge likely owe their failure to
machine error-related problems; further improvements to the code could push the success
rate up close to 100%.

There are two measures of tolerance built into the code: the convergence tolerances τr

and τa and the line search cutoff tolerance τl . The former is a test of the L2-norm of the
reduced gradient (7), and the routine was found to be tolerably stable for the test runs at an
absolute value τa = 10−4 and relative value τr = 10−6. For the test runs, the method was
found to be relatively insensitive to τl in terms of finding local minima. The tradeoff here
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Fig. 4 Subclusters involved in
the constraints for translational
invariance. The constraints
correspond to a ≡ b, c ≡ d ,
c ≡ e, f ≡ g, h ≡ i, h ≡ j , k ≡ l

and m ≡ n

is speed vs. accuracy—the solution is only as accurate as the size of τl (which cannot be
smaller than the machine precision). In order to be certain of an accurate result, τl = 10−10

was used, although a tolerance several orders of magnitude greater would probably have
been acceptable.

Using these tolerances, speed of convergence was, depending on the start point and final
phase reached, anywhere between several seconds and a fraction of a second on a single
CPU of an Intel Core2Duo processor. Unsurprisingly, convergence to metastable states took
longer than convergence to stable ones. In terms of iterations, the average number for suc-
cessfully converged runs was 4595, with a standard deviation of 9010 and median of 1507.
These numbers reflect the sensitivity of the computation time to the starting point and to the
nature of the local minimum reached; on the runs with higher iteration counts, much time
was spent toward the end of the run in the neighborhood of the minimum, suggesting that
second-order information might be used to speed things up considerably. However, even as
it stands, the time to convergence was quite reasonable, suggesting room for considerable
increase in the size of the maximal cluster.

3.5 Metastable Order-Disorder Transitions

A set of order parameters for the system was established in the following way. From the
converged probability distributions at each state point, the likelihood of occurrence of the
defect pairs used in the Hamiltonian were calculated. We will call this set of probabilities
{xi,j }, where the index i refers to the particular pair, one of YY1 (first nearest-neighbor yt-
trium pair), YY2, YV1 (first nearest-neighbor yttrium-vacancy pair), YV2 or VV, and the
index j (if applicable) refers to the phase. Two phases that can be identified right away based
only upon the Hamiltonian, the crystal structure and the concentrations are the completely
random phase—the maximization of the entropy assuming no defect interactions—and the
completely ordered phase, which is found by minimizing the Hamiltonian subject to the con-
straints of concentration, normalization and translational invariance. Denoting these phases
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Fig. 5 a order parameter for
second-nearest neighbor
yttrium-vacancy separations and
b corresponding free energies for
state points calculated at
40-degree intervals between 400
and 2000 K and concentrations of
0.05–0.095 mol % YO1.5.
Discrete symbols indicate that the
starting point was the completely
random state; the starting point
for the solid lines was the
completely ordered state. The
deviations from a smooth line in
the free energy at 0.065 mol % in
the neighborhood of 600 K are
due to a slight numerical
instability

with the subscripts j ≡ o and j ≡ r , respectively, we may calculate the order parameters ηi

in the following way:

ηi = xi − xi,r

xi,o − xi,r

(10)

A plot of ηYV 2 for temperatures in the range 1000–2000 K and doping fractions of 0.05-
0.095 mol % YO1.5, along with a plot of the corresponding free energies, are shown in Fig. 5,
with plots for ηYY1 and ηYY2 appearing in Fig. 6.

Two stable phases appear for this system—a relatively ordered phase, whose principal
components in terms of the 8-figure are shown in Fig. 7, and a relatively disordered phase
occurring at high temperatures, in which many different 8-figure configurations have a sig-
nificant probability.

As the free energies reveal, however, the disordered phase is only metastable, and conver-
gence to this phase depends on the starting point in the optimization. Two different starting
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Fig. 6 Order parameters for a
first and b second-nearest
neighbor yttrium-yttrium
separations for state points
calculated at 40-degree intervals
between 400 and 2000 K and
concentrations of 0.05–0.095 mol
% YO1.5. Discrete symbols
indicate that the starting point
was the completely random state;
the starting point for the solid
lines was the completely ordered
state

points were used, corresponding to the completely random and completely ordered phases
discussed above. It was only possible to realize the diffuse phase when starting from the
random distribution. When starting from the completely ordered state, the ordered phase
is always found, as indicated by the continuous lines in Figs. 5 and 6. As temperatures
decrease, the disordered phase becomes unstable. These transition points between metasta-
bility and instability were determined to within 1 K for each concentration by tightening
tolerances to τr = 10−7 and τa = 10−5, stepping down in temperature in single-degree in-
crements, and using the convergence point for the previous step as the starting point for the
next. (It should be pointed out that the error in determination of critical temperatures using
this method may be greater than 1 K.) The results appear in Table 2.

It is clear that these calculations, in requiring that the concentration of defects in the
phase remain constant, correspond in some sense to those situations in which the long-range
diffusion required in nucleation and growth processes is restricted. The diffusion distances
allowed are probably not more than one or two inter-cation spacings. From Fig. 7, it seems
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Fig. 7 Configurations of the
8-figure which appear in the
ordered phase

Table 2 Transition temperatures
at which the disordered phase
becomes unstable for various
concentrations of yttrium

Concentration (mol % YO1.5) Transition temperature (K)

0.05 1452

0.065 1591

0.08 1725

0.095 1855

that the effect of the ordering reaction could be a short-range clustering of yttrium—perhaps
in groups spanning only a portion of a unit cell—separated by areas of relatively sparse
defect concentration. In any event, it is worth reiterating that the “equilibrium” phase cal-
culated here is in fact also metastable with respect to the given Hamiltonian and crystal
structure.

As mentioned, the disordered phase is only visited (for the state points for which it is
stable) when the starting point is also disordered—this simulates a rapid quench from high
temperature, but of course in reality the appearance of such a metastable phase depends on
the energy barrier between it and the more stable alternative, compared with the amount
of thermal energy in the system. In this sense, the descent method, which allows defects to
move only in the direction of a decrease in free energy, is in fact a poor model of the physical
behavior—it can be used to identify potentially stable states, but not to predict whether or
not they will actually occur.

With this caveat, and cognizant of the likely shortcomings of the Hamiltonian, we com-
pare the transitions calculated with those of the experimental metastable phase diagram
constructed by Yashima et al. [32]. In Yashima’s diagram, there are, in fact, c − t ′ and c − t ′′
transitions occurring in the temperature and concentration range where the diffuse phase
was found to be stable in the present study. But the behavior with respect to temperature and
concentration is opposite: additional yttrium tends to stabilize the high-temperature cubic
phase in the experimental system, whereas addition of yttrium tends to destabilize the high-
temperature phase in this study, as shown in Figs. 5 and 6 and Table 2. Given the simplified
nature of the Hamiltonian, the size of the maximal cluster, and the fact that all energy calcu-
lations were made in cubic phases, it is difficult to comment on this discrepancy. However,
in reference to the discussion of the previous paragraph, it could be pointed out that the
increase in thermal energy afforded by the higher temperatures might be the decisive factor
here.
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4 Discussion

One of the oldest and perhaps most widely used methods of solution for CVM is Kikuchi’s
natural iteration method (NIM) [14, 15]. As the name suggests, this method has the advan-
tage of a very straightforward implementation. The constraints are added to the functional
with Lagrange multipliers. The functional is then differentiated with respect to pβ(sβ), and
pβ(sβ) is solved for in terms of its subcluster marginals pα, α ⊂ β and the Lagrange multi-
pliers:

pβ(sβ) ∝ exp

[−hβ(sβ)

nβkBT

]{∏

k

exp
[
λk(β)Lβ(sβ)

]} ∏

α⊂β

∏

sα

pα(sα)
Lαβ (sα,sβ ) (11)

where λk are the Lagrange multipliers, and Lβ and Lαβ are sets of constants depending
on the lattice and choice of maximal clusters. The main iteration, beginning with a guess
{pβ(sβ)}, successively calculates the subcluster marginals and a new {pβ(sβ)} through (11).
The inner loop of the iteration is one in which Lagrange multipliers must be solved for by
substituting (11) into the constraint equations (2)–(4). Newton’s method may be used for
this inner loop, or some other iterative scheme.

Pretti [25] analyzed the NIM in its general form, and determined a sufficient criterion for
the convergence of the outer loop, which depends on the form of the lattice and maximal
clusters through the coefficients cα = aαnα . The criterion states that, for all maximal clusters
β , there exists a set of nonnegative coefficients {cα−|α+} such that

cα+ =
∑

α+⊂α−⊂β

cα−|α+ ∀α+ ⊂ β (12a)

−cα− ≥
∑

α+⊂α−
cα−|α+ ∀α− ⊂ β (12b)

where α+ and α− denote subclusters with positive and negative coefficients cα+ and cα− ,
respectively. An analysis linking Pretti’s criterion with the form of the lattice and maximal
clusters has not yet appeared. However, one may verify that the basic cluster used in Sect. 3
does not meet this criterion.

Pretti also showed that NIM is a special case of a general class of methods for solving
CVM problems. These methods were presented in general form by Heskes et al. [11], who
expanded on the work of Yuille [34]. The main idea is the splitting of the CVM functional
into concave and convex parts. The more general method given by Heskes et al. re-writes the
problem in a fully convex form, by bounding from above the concave parts of the functional
with a convex one at each iteration. Belief propagation can then be reliably used to minimize
the convex functionals.

These belief propagation-based algorithms (including NIM) are not subject to failure due
to roundoff errors in the calculation of the basic cluster marginals pβ(sβ). This is because
they all take the form of (12) in the sense of being a product of positive terms, thereby ensur-
ing that all probabilities are greater than zero. This is a relative advantage over the method
presented in this paper in terms of reducing the complexity in implementation, consider-
ing the various measures needed for the implementation of the reduced gradient method as
described in Sect. 2.2.3.

However, like the belief propagation/bounding methods, the reduced gradient/line search
cutoff method is provably convergent for the general case. Its principal advantage over other
methods is its winnowing of the size of the problem, meaning that it will probably be most
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appropriate to use in the case of complex, low-symmetry lattices and large maximal clusters.
Use of the method in these contexts could help CVM retain its advantage in computational
load over Monte Carlo methods.

5 Conclusion

The reduced gradient method with a line search cutoff is a generally convergent method
of solution for the cluster variation method, in which the computational load for problems
in complex lattices with large maximal clusters may be considerably reduced. The routine
was tested successfully on an eight-ion cluster in a fluorite lattice, with binary occupancy
on each sublattice. Using pairwise energies calculated using DFT models of yttria-doped
cubic zirconia, the method located metastable disordered phases at high temperatures and
low doping levels.
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